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Multi-mode models of flow and of solute 
dispersion in shallow water. Part 2. 

Logarithmic velocity profiles 

By R. SMITH 
Mathematical Sciences, Loughborough University of Technology, LE11 3TU, UK 

(Received 1 July 1994 and in revised form 12 October 1994) 

A two-mode model for velocity and solute concentration in shallow-water flows is 
derived which allows for departures from the logarithmic velocity profile and from 
vertically well-mixed concentrations. The modelling is tested against exact results for 
a buoyancy-driven transverse flow and for a modified logarithmic velocity profile. 

1. Introduction 
Certain features of shallow-water flow and solute dispersion cannot be represented 

in the simplest vertically averaged model equations. Amongst those features are the 
skewed flows and greatly enhanced transverse dispersion when different driving forces 
(pressure gradient, buoyancy, wind stress, Coriolis effects) are not aligned or when a 
single driving force is neither parallel nor perpendicular to the depth contours. Davies 
(1987) reviews the use of more than one mode to represent skewed flows in offshore 
waters. In Part 1 of this sequence of papers (Smith 1995) the multi-mode approach was 
extended to encompass solute dispersion. For the illustrative example of laminar flows 
it was demonstrated that a two-mode model accurately accounted for the differences 
in flow structure and in solute dispersion between Poiseuille (pressure-gradient driven) 
and Couette (surface-stress driven) flows. 

So, the 
selection of modes made in Part 1, for constant-viscosity flows, would not be as 
efficient when the flows are turbulent. Accuracy would be lost or more than two 
modes would need to be computed. The purpose of the present paper is to derive and 
test a two-mode model appropriate for smooth-bed turbulent flows(with von-Kirman 
velocity profiles near the bed). 

In practical coastal engineering situations the flows are not laminar. 

2. Legendre polynomial modes 
In sigma coordinates (Phillips 1957), a denotes the fractional distance between the 

bed (CT = 0) and the water surface (a = 1). Guided by the work of Heaps (1972) but 
using the notation of Part 1, we use an idealized dimensionless shape k(a) of the eddy 
diffusivity to determine the concentration modes Y(m)(a) .  In terms of the modes the 
concentration c(x,  y ,  a, t )  is represented 

m 

m=O 
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The actual modelling for the eddy diffusivity K(X, y, 0, t )  can deviate in shape from 
the ideal (see $6). However, we can anticipate that the more appropriate the choice 
of k(o) the more rapid the decay of successive concentration amplitudes do), dl), . . . 
and the better the accuracy of a truncated representation. 

For turbulent open channel flows the classical von Karman shape for the eddy 
diffusivity and eddy viscosity profiles is a parabola 

(2.2) 

where 0. is the extremely small dimensionless roughness height (about 0.0001). With 
terms of order 0. neglected, the diffusion eigenmodes are rescaled Legendre Polyno- 
mials 

k ( 0 )  = 9(0) = (1 - a)(o + 0*), 

Y(O) = 1, Y(') = f i  (20-l), Y(m) = (2m+1)'l2 Pm(20-1), = rn(m+l). (2.3a-d) 

The eigenvalues A(m) are dimensionless response rates. The evolution equation satisfied 
by c(~)(x,  y, t )  is the Y(m)  component of the conceqtration transport equation (Part 1, 
(4.3)). 

The two horizontal velocity components u(x, y, a, t )  and ~(x, y, 0, t )  have the repre- 
sentations 

co co 

24 = c d r n ) ( X ,  y, t)@(m)(a), ZI = c v(m)(x, y, t ) @ ( m ) ( 0 ) ,  (2.4a, b) 

where @ ( m ) ( ~ )  are the velocity modes. Although k(a) and $(a) are equal, the dif- 
ferent bed boundary conditions of zero concentration flux and of no slip, make the 
concentration and velocity modes ( Y(m), A(m)) and (@("I, F ( ~ ) )  unequal. 

To represent the velocity eigenmodes we introduce the small parameter E (about 

E = -1/ In o., a, = exp(-l/E). (2.5a, b) 

m=O m=O 

1/91 

Correct to the stated order in E the velocity eigenmodes are 

f 

m 

+ E2 c (2j + l) [l + (-1)j-1Pj(20 - l)] +. . . }, 
j= 1 j2(j + 1)2 

(2.6a) 

@(l) = 4 { 1 + S E  + . . .} ((20 - 1) [1 + E h  (0 + O.)] - 2E0 + . . .}, (2.6b) 

Pm(20 - 1) [l  + Eln(0 - a*)] 
x {  

m-1 

(m - j)(m + j + 1) 
j = O  

p(m) = m(m + 1) + ~(2m + 1) + . . . . (2.6d) 
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The logarithms are associated with the no-slip boundary condition at the bed. The 
evolution equations satisfied by dm), dm) are the @(m) components of the horizontal 
momentum equations (Part 1, (3.4)). 

To a first approximation the sigma coordinate system accounts directly for the 
vertical motion associated both with non-uniformly in the bed level z = -h (x , y )  and 
with variations in the free surface position z = [(x, y, t). A full representation of the 
vertical motion (Part 1, (2.3), (3.2)) involves auxiliary modes dm) : 

(2 .7~)  

(2.7b) dl) = J3{(-a2 + 0 )  [I + cln(o +ar)  + E;] + ...}, 
r 

2m 
& & +- 

m + l  2m+1 
-- 

j= 1 

m-1 (- i )m-j+l  
[Pj+1(20 - 1) - Pj_1(20 - l)] + . . . . 

(m - j ) (m + j + 1) 
+ ~ ( 2 m  + 1)1/2 C 

j=l 
(2.7~) 

3. Mass, momentum and concentration equations 

integrated mass conservation equation (Part 1, (3.3)) becomes 
In a truncation involving just the m = 0 and m = 1 velocity modes the vertically 

= H I o  Qda, 

where 

H = [ + h ,  

(3 .1~)  

(3.lb) 

and Q(x, y, a, t) represents the volume discharge rate of water at any sources in the 
flow. In the limit as E tends to zero this becomes the classical (vertically averaged) 
mass conservation equation (Lamb 1945, Chapter 8). 

For the viscosity we pose the decomposition 

v = NO + v’ where 1’ (a e b * ) 2  do = 0. (3.2) 

Thus, the representative value N is strongly weighted by values close to the bed (i.e. 
v’ is extremely small near the bed). 

In a two-mode truncation the horizontal momentum equations (Part 1, (3.4u,b)) 
are 
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To facilitate practical applications, numerous complications have been accounted 
for: f is the Coriolis frequency, MI, M2 are momenta associated with any body forces 
or discharges, P is the atmospheric pressure, PO is a reference water density, apoc is 
the density perturbation caused by the solute, and 71, 72  are surface wind stresses. 
The coefficients are correct to the stated order in E .  

The eddy viscosity N-terms in equations (3.3 c,d) for dl) and dl) are order E larger 
than the N-terms in equations (3.3 a,b) for do) and do). The pressure gradient terms 
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exhibit the converse disparity. If the force balance were principally between bottom 
drag and pressure gradient, then dl) ,  d l )  would be order g2 smaller than do', do). 
When we ignore d l ) ,  u( l )  the non-visocity coefficients only differ by order e2 from the 
coefficients in the shallow-water approximation (Lamb 1945, Chapter 8). To minimize 
errors, Falconer (1976) advocates the retention of such correction factors for the 
non-uniform velocity profile in practical prediction methods. 

The two-mode truncation of the concentration equations (Part 1, (4.3)) is 

H l l ( q  - c(')Q)do - Hc(') f i ( 2o  - 1)Qdo 1 

Here q(x, y ,  o, t )  is the source strength. Again, the coefficients are correct to the 
stated order in E. In equation (3.4b) the K-integral terms representing horizontal 
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? Free surface u = 1 

FIGURE 1. Pressure-driven longitudinal velocity and buoyancy-driven transverse velocity (-) for 
turbulent open-channel flow, compared with the two-mode approximations (- - - -). 

diffusion have been neglected on the premise the square of the depth-to-horizontal 
ratio of length scales is very small. There are no shear dispersion coefficients in 
equations (3.4a,b). It is the interaction between do) and dl) that gives rise to the 
dispersion process (Part 1, Appendix). 

4. Test of longitudinal velocity and dispersion 
As in the laminar tests (Part 1, @6, 7), we restrict attention to steady uni-directional 

flows in water of constant depth with no buoyancy or rotation effects and to discharges 
with negligible volume or momentum. For the eddy viscosity and diffusivities we use 
the model (Fischer 1973): 

(4.la, b) v = IC = k u.H(1 - ~ ) ( a  + 0.) , K = 1 2 k u.H d3 
where k is von Karmin’s constant (about 0.4) and U. is the friction velocity. 

For a steady pressure-driven flow, the exact velocity has a logarithmic profile 

[1+ ~ l n ( a  + a.)] with u? = -H 

(4.2a, b) 
In the two-mode approximation, (3.3a-d), the steady solutions are 

, u(0) = - [1 - E2/2] H 1 aP 
E[l+E] ~ { ~ ~ + g %  

u( l )  = 

Figure 1 compares the dimensionless velocity profiles 

( 4 . 3 ~ )  

(4.3b) 

(4.4a, b) 

with @(O), @(l) given by the truncated formulae (2.6a,b) and with 

E = 1/9. (4.5) 
The small error exhibits the two zero crossings associated with the dominant neglected 
m = 2 mode. 

In view of the truncation of the formulae (2.6a,b) for the eigenmodes @(O), @(I) and 



284 R. Smith 

the truncation of the coefficients in equations (3.3u,c), the expression (4.4b) is formally 
equivalent to 

1+Eln(o+o,)+E2 
j 2 ( j  + 1)2 

j=2 

This makes explicit the size (k2/36) and shape P2(20 - 1) of the error. However, E is 
not arbitrarily small and equations (4.4b), (4.6) are not identical. To test the actual 
errors it is appropriate to use the awkward full expression (4.4b) and not the neater 
formal approximation (4.6). The exact result for the asymptotic centroid velocity is 

When dl) has decayed, the natural velocity for do) in equation (3.4~)  is 

[ l  - &2/2]U(O) - & - U ( l )  8 
2 -  

If we substitute the values (4.3u,b) for do and u(l)  we obtain the expression 

3E3 } 
+ 4[2 + 3 ~ 1  

(4.8) 

(4-9) 

The fractional difference between equations (4.7) and (4.9) is formally of order E~ and 
numerically of size 0.0005 for E = 1/9. 

Going beyond the standard shear dispersion models (Taylor 1953; Elder 1959) we 
consider the centroid displacement G(o’) + G(o) relating to the release height O’ and 
observation height O. A Legendre polynomial series (Smith 1982, (9.7)) for the exact 
centroid displacement function is 

(-1)j-I(2j + 1) 00 

Pj(20 - 1). (4.10) 

For the two-mode model, the approximation for G is (Part 1, (A9)): 

G = -!!- 2k u* [E$  (1 + ; E )  do) + dl)] d ( 2 0  - 1). (4.1 1) 

The results (4.3u,b) for do), u(l)  allow us to re-write this approximation: 

Figure 2 compares the shapes of the exact of approximate centroid displacement 
functions (4.10), (4.12). 

Elder (1959) gives the longitudinal shear dispersion coefficient for logarithmic 
open-channel flow: 

D=0.40411 ( K )  
k u. 

(4.13) 
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Free surface (r = 1 

FIGURE 2. Shapes of the centroid displacement functions (-) and the two-mode approximations 
(- - - -) for pressure-driven longitudinal and buoyancy-driven transverse turbulent open-channel 
flows. 

For the two-mode model the approximation for D is (Partl, (All)): 

(4.14) 

If we substitute for do), dl), we obtain the approximation 

D = - {  3 (1 + 3~/2)(  1 - e2/2) 
8 1+E 

For E = 1/9 the numerical factor in the approximation (4.15) is 0.3719. Thus, the 
error in the shear dispersion coefficient is 8%. (This would correspond to an over 
estimate of 4% in the peak concentration.) 

Again going beyond the standard shear dispersion models, we consider the deficit 
variance (Chatwin 1970) 

2 G = 0 . 3 8 3 5 ( H )  k u. (4.16) 

From the two-mode result (4.12) we obtain the approximation 

3 (1 + 3~/2) (  1 - c2/2) 
(4.17) 

It happens that the numerical coefficient is the same as in equation (4.15), with the 
value 0.3719 when E = 1/9. The error is only 3%. 

- {  8 1 + E  

5. Test of the transverse flow and dispersion 
In the principal flow direction the m = 0 and m = 1 modes are both available to 

contribute to accurate representations of the flow and of the concentration. However, 
in the transverse direction the presence of side walls ( y  = constant) would enforce 
zero vertically integrated flow of water: 
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(cf. equation (3.1~)). Thus, in the representation of the transverse flow we have lost 
one degree of freedom: 

To test the accuracy of this representation and of the associated transverse shear 
dispersion, we consider the effect of buoyancy far downstream of a continuous 
discharge in a steady flow. 

Sufficiently far downstream the dominant terms in the two-mode transverse mo- 
mentum equations (3.3b,d) are 

The physical role of the small transverse free surface slope a(/ay is to eliminate any 
vertically integrated transverse flow of water. The strength of the buoyancy-driven 
transverse flow u(l)  is given by 

where 
(2 - &')(8 + 2~~ + 3c3) 

I ( & )  = 
2(8 + 128 - 8c2 - 9c3 + 5c4 + 3 ~ ~ ) '  

(5.4a) 

(5.4b) 

In view of the truncation (2.6b) of @('), these formulae (5.4u,b) are valid only to 
order E. However, in a test of the usefulness of the truncated equations (3.1), ( 3 . 3 ~ 4 ,  
(3.4u,b) it is appropriate to use the full expression (5.4u,b) and not merely the leading 
terms 

I(&) = 1 -&; +.... (5.4c) 

For the buoyancy-driven transverse dispersion in open-channel flow Smith (1979) 
derives the velocity profile 

Figure 1 compares the dimensionless velocity profiles 

for E = 1/9 and with @(O), @(l) as given by the truncated formulae (2.6u,b). 

function is 
For the velocity profile (5.5) the corresponding transverse centroid displacement 
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The transverse counterpart of the longitudinal two-mode formula (4.1 1)  is 

Gl(a) = 2k u+ [E$ (1 + : E )  do) + d’)] d ( 2 0  - 1). 

Substituting for do) and dl) from equations (5.1), ( 5 . 4 ~ )  we obtain the two-mode 
approximation 

+ 1 (2a - 1). 1 agH3 ado) I ( E )  [ 3~’(2 + 3 ~ )  
Gl(a) = 8k2u? ay 4(2 - E’) 

(5.9) 

Figure 2 compares the shapes of the exact and approximate centroid displacement 
functions. Again, we emphasize that standard shear dispersion models omit this 
dependence upon discharge height and observation height. 

For the transverse shear dispersion coefficient Smith (1979, equation (14c)) obtains 
the result 

(5.10) 
3 E  E 2  + 2.42466 (i-> ] , 

- &  

which agrees well with experimental results of Prych (1970). The transverse counter- 
part of the longitudinal two-mode formula (4.14) is 

Substituting for do) and dl) we obtain 

(5.11) 

(5.12) 

Fortuitously, the leading numerical coefficient in the limit as E tends to zero is the 
same in the exact and approximate results (5.10), (5.12). However, for E = 1/9 the 
two-mode formula (5.12) is a factor 1.17 larger than the exact result (5.10). Thus, in 
buoyancy-dominated regimes the plume width would be exaggerated by about 8.5% 
and the peak concentrations under-predicted by about the same percentage. 

6. Getting the turbulence model wrong 
In a numerical implementation of the two-mode model the vertical profiles of 

v and IC may vary with x , y , t  and would depend upon the choice of turbulence 
model (Hutton, Smith & Hickmott 1987). As a measure of how well the two-mode 
model copes with shapes different from the reference shapes (2.2), we investigate the 
longitudinal flow and longitudinal dispersion for the solvable case. 

v = IC = k u.H( 1 - 0/2)(o + a*). (6.1) 

The decomposition (3.2) yields the values 

(1 - ~ / 2  , kHu*(a + CT*)(CJ - E )  

( 1 - E )  ’ = 2( 1 - E )  
N = k u . H  (6.2a, b)  

Hence, v’ is extremely small close to the bed, but grows to twice the maximum value 
of the standard viscosity model ( 4 . 1 ~ )  near the free surface. 
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I 

FIGURE 3. Exact results (-) for the modified logarithmic velocity profile and the corresponding 
centroid displacement function, compared with the two-mode approximations (- - - -). 

For steady uni-directional pressure-driven flow with no buoyancy or rotation effects, 
the exact velocity is a modified logarithmic profile: 

With all the v' integrals evaluated explicitly, the corresponding simplifications of the 
two-mode momentum equations (3.3~2,~) are 

k u d ) ,  
&$( 1 - E/2) 

2 ( 1 - E )  
- 

The solutions for do) and dl) are 

(6.4~)  

(6.4b) 

(6.5~) 

( 6 3 )  

Figure 3 compares the shapes of the exact (6.3) and two-mode velocity profiles. The 
error only becomes perceptible close to the water surface. 

For the modified logarithmic velocity profile (6.3) the exact result for the asymptotic 
centroid velocity is 

[1-~(2-ln2)] .  

With the results (6.5u,b) for do) and dl), the formula (4.8) for the two-mode centroid 
velocity becomes 

H 1 ap ay 2(1- &)(32 - 6082 + 45E4 - i o E 6 )  

(2 - 4(32 + 268 - 37c2 + 4 0 ~ ~ )  . (6.7) -= { 'gz 
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Although the fractional disparity between equations (6.6) and (6.7) is formally of 
order E, the fractional error has the small value 0.0018 for E = 1/9. 

Correct to order o., the centroid displacement function for the diffusion model 
(6.1) is 

(6.8) 
The changed formula (6.1) for rc doubles the final rc-integral in equation (3.4b) 'and 
halves the expression (4.1 1) for the approximate centroid displacement: 

H 
G = - [E" (1  + : E )  do) + u(l) 

4ku. 2 

Figure 3 compares the shapes of the exact and approximate centroid displacements. 
The large disparities can be attributed to there only being a single mode Y(')(o) 
contributing to the approximation. Moreover, that single mode is not designed to 
accommodate the different diffusivity profile (6.1). 

The exact longitudinal shear dispersion coefficient is 

(6.10) 

Again, the changed formula (6.1) from rc halves the expression (4.14) for the approx- 
imate shear dispersion coefficient : 

D = [E$  (1 + 2.) do) + d')] &. 
For E = 1/9 and with the solutions (6.5a,b) for do) and u(l), we obtain 

(6.11) 

(6.12) 

Hence, there is a 1/8 over-estimate of the shear dispersion (resulting in a 1/16 under- 
estimate of the peak concentration). If the two-mode model had made no allowances 
for the disparity between the shapes of v, rc and the initial idealization (2.2), then 
the numerical factor in the dispersion coefficient would have remained at the value 
0.3719 (almost double the exact value). 

7. Concluding remarks 
When two modes @(O), @('I contribute, the accuracy in replicating the velocity 

is impressive. For the design case with the reference eddy viscosity profile ( 4 . 1 ~ )  
the maximum fractional error for the longitudinal velocity is 0.002 (figure 1). Even 
when the turbulence model (4. la) is inappropriate, the maximum fractional error only 
increases to 0.005 (figure 3). By contrast, when there is just a single mode Y( ' )  to 
approximate different centroid displacement functions in a range of circumstances 
(as in figures 2 and 3) the errors are much larger. The value of the eventual shear 
dispersion coefficient is linked to the amplitude of that single mode. In the worst case 
(6.10) the shear dispersion coefficient has deviated by more than a factor of two from 
the reference situation (4.13). Yet, the two-mode model (6.12) still manages to get to 
within 0.13 of the exact result. 
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The referees of Part 1 posed questions, some of which are answered here. 
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